
Deconstructing a Zero-Day: 
XCSSET Malware

Among the recent malware targetting macOS in the wild, arguably 
none have been more relentless and enterprising the XCSSET family. 
Continuing on its mission to compromise privacy data, its authors have 
shown repeatedly that they are unyielding in their efforts."

The king is dead, long live the king!

Recently, a vulnerability was identified as being actively 

exploited that could allow an attacker to bypass the 

Transparency Consent and Control (TCC) framework 

within macOS (CVE-2021-30713). This is the system that 

controls what resources applications have access to, 

such as granting video collaboration software access 

to the webcam and microphone, in order to participate 

in virtual meetings. The vulnerability in question could 

allow an attacker to gain Full Disk Access, Screen 

Recording or other permissions without requiring the 

user’s explicit consent

This zero-day vulnerability was detected by members 

of the Jamf Protection detection team. The team 

discovered this bypass being actively exploited by 

the XCSSET malware after a significant uptick in 

variants was observed in the wild. Once a device is 

compromised by XCSSET, the malware was observed 

as exploiting this bypass specifically for the purpose 

of spying on the user’s desktop by taking screenshots 

without requiring additional permissions or prompting 

the user to enable access to system resources.



What is the XCSSET malware?

Initially reported in August 2020, a new strain of malware dubbed XCSSET was revealed by Trend 

Micro. This malware targeted Mac developers by infecting Xcode projects in Github repositories. 

Through infecting Github repositories that were leveraged by applications in development, it 

managed to get pulled onto developer machines through normal software development activity. 

Among the more novel aspects of note is the way in which the malware was developed. XCSSET 

was written completely in AppleScript — a scripting language developed by Apple — that facilitates 

automation among script-enabled Mac applications and thus not commonly a target for common 

malware prevention tools. In many instances, the malware author leveraged AppleScripts within 

their attack chain due to the simplicity in which it handles bash commands and acquiring and 

executing scripts — including those based on the Python framework — thus obfuscating their 

intentions by implementing a confusing mix of various scripting languages.

Upon initial discovery, XCSSET garnered extensive attention from the security community due to 

it utilizing two Mac specific zero-day exploits to compromise endpoints. The first exploit acquired 

the cookies from the Safari browser, which are protected by System Integrity Protection (SIP). The 

second exploit bypassed user prompts in order to install a developer, or potentially unwanted 

version of the Safari application that allowed for interception of data and privacy, completely 

invisible to the end-user.

However, upon further inspection of the malware, the Jamf team discovered that it had also been 

exploiting a third, previously undetected zero-day vulnerability to bypass Apple’s TCC framework, 

further compromising end-user data and privacy while leaving the door open for attack escalation 

against infected devices.

https://www.trendmicro.com/en_us/research/20/h/xcsset-mac-malware--infects-xcode-projects--uses-0-days.html
https://www.trendmicro.com/en_us/research/20/h/xcsset-mac-malware--infects-xcode-projects--uses-0-days.html


What is TCC?

From a user perspective, TCC is the prompt received when a 

program attempts to perform an action that Apple believes could 

violate the user’s privacy and should require explicit permission 

from the user before allowing the action to occur. Similar to the 

collaboration software example mentioned previously, other 

examples of TCC in action are saving files to a local directory 

within the user’s profile, capturing key strokes via the keyboard 

or other input device or recording audio from the microphone. 

When an application attempts to perform such an action without 

authorization to the resource, the user is presented with a 

prompt requesting access to grant or deny the application 

permission to use the resource in question. In some instances, 

users are required to first go into the System Preferences and 

authorize permissions to the application granularly before it can 

perform requested the action or utilize certain resources. Upon 

granting the requested permission, the application is now free 

to perform that action, including use of the resource, without 

further prompting the user again unless the access rights are 

manually disabled in the privacy settings or the application is 

uninstalled from the device. 

Terminal app prompting the user for 

permission to run a program that wants 

to take a screenshot and/or record the 

screen.

Manually modifying privacy permissions to applications via the system preferences.



Step by step process map of how the XCSSET malware compromises applications.

How does the XCSSET malware work?

From a developer’s perspective, the path the XCSSET malware takes to compromise applications 

to further its goal of infecting an endpoint is quite the multi-forked road, relying on interconnected 

paths that ultimately come together as one to fulfill its purpose.

During the analysis of XCSSET, Jamf’s CORE team noted an AppleScript module titled “screen_sim.

applescript.” Within the module, a check named “verifyCapturePermissions” was being used to 

procure an application ID as an argument. This function attempts to verify whether a specific 

application has already been granted the permissions necessary to capture a screenshot. 



The function, then performs this check for a list the known applications that may be installed on the 

endpoint. This list is derived from an earlier check of curated appIDs commonly known to request 

and utilize the display capture permission for the application’s legitimate operation. In the example 

below, these applications are referred to as “donorApps” by the malware author.

AppleScript code snippet that contains a list of donor apps commonly known to have the necessary permissions enabled.

The malware then uses the mdfind command — a command-line-based version of Spotlight — to 

verify if the appIDs from potential donor apps list are a match to any of the applications currently 

installed on the target device. 

AppleScript code snippet that contains a list of donor apps commonly known to have the necessary permissions enabled.

Upon successfully locating a match, the command returns the path to the installed application. 

Armed with this information, the malware automatically crafts a customized AppleScript 

application and injects it into the installed donor application.

AppleScript code snippet containing the createDonorApp function used to inject malicious code into an app.



Deep-diving into Generating the Injected 
AppleScript code 

1.	The XCSSET AppleScript screenshot module is downloaded from 

the malware author’s command and control (C2) server (to the ~/

Library/Caches/GameKit folder).

2.	Using the osacompile command, the screenshot module is 

converted to an AppleScript-based application called avatarde.

app. When any AppleScript is compiled in this manner, an 

executable called “applet” is placed in the newly created 

application bundle’s `/Contents/MacOS/` directory, and the 

script that the applet will execute can be located at `/``Contents/

Resources/Scripts/main.scpt`.

3.	The newly created Info.plist is then modified by the plutil binary, 

changing the preference setting LSUIElement to true. This allows 

the application to be run as a background process, concealing its 

presence from the user.

4.	A blank icon is then downloaded and applied to the application.

5.	Lastly, the newly created application is placed within the already 

existing donor application using the following code:

Malicious application getting placed within the donor app via the performCopy() function

For example, if the virtual meeting application zoom.us.app is found on the system, the malware will 

place itself like so:



If the target computer is running macOS 11 or greater, it will then sign the avatarde 

application with an ad-hoc signature, or that is, self-signed by the computer itself, 

mimicking securely signed software that has been notarized for use within macOS. 

 

Once all the necessary files have been generated and the custom application created, 

it will then piggyback off of the parent, or donor application, which in continuing with 

the example above is Zoom. This means that the maliciously crafted application can 

now take screenshots and record the screen without requiring explicit consent from the 

end-user. It can do so by inheriting the TCC permissions outright from the Zoom donor 

app. 

 

The vulnerability and subsequent exploit represents a considerable privacy concern for 

end-users. 

 

During Jamf’s analysis, it was determined that this vulnerability is not limited to just 

screen recording permissions either. In fact, multiple different permissions were 

successfully provided to the parent application during the testing phase which were 

also transferred to the maliciously created app. Examples of this include but are not 

limited to, powering on the front-facing camera and taking pictures, recording audio 

with the built-in microphone or accessing the documents stored within the user’s profile 

folders, such as Desktop, Documents and Downloads.



How do you keep Mac safe?

As of macOS Big Sur 11.4, the zero-day has been patched by 

Apple. Executing the XCSSET malware on a Mac computer that is 

up-to-date now prompts the end-user to either open the System 

Preferences app in order to manually enable the process to run, 

or they can simply deny it right from the message dialogue box 

on-screen. Jamf urges users to “patch fast and patch often.”

For devices that have yet to be updated or simply cannot due to 

company policy or myriad reasons, Jamf Protect includes analytics 

to detect and prevent the XCSSET malware - and others like it 

anytime this vulnerability is potentially being abused - to mitigate risk of compromise 

and/or infection to Mac endpoints.

It accomplishes this by determining if an application is bundled within another 

application. When a match is found, it proceeds to verify the digital signatures between 

the two applications to effectively detect mismatches in the process signing information. 

When a mismatch is detected, Jamf Protect halts the system process and triggers an alert 

for further triage by IT before the potentially malicious or unwanted application is allowed 

to execute and distribute its payload.

TCC permission dialogue box



Indicators of Compromise (IoC) 
 
Command and Control Domains:
trendmicronano[.]com 

findmymacs[.]com 

adoberelations[.]com 

statsmag[.]com 

statsmag[.]xyz 

flixprice[.]com 

adobestats[.].com 

titiez[.]com 

icloudserv[.]com 

atecasec[.]com 

monotel[.]xyz 

sidelink[.]xyz 

mantrucks[.]xyz 

linebrand[.]xyz 

nodeline[.]xyz

Initial Infection Executables:

An end user can manually select the certificate and use it as an authentication to the 

corporate wireless network.

When the user attempts to connect to an 802.1x enterprise network, they change the 

mode to EAP/TLS and then select a certificate from the keychain.

screen_sim applescript module

Jamf Protect provides a purpose-built security solution for your Mac 
enterprise, featuring real-time monitoring, threat detection and prevention, 
as well as antivirus protection. Our solution is powerful, yet light-weight and 
highly effective at mitigating risks for endpoints and protecting enduser data 
and privacy.

But don’t take our word for it — put Jamf to the test!

To schedule a trial of Jamf Protect or learn more about how Jamf helps you to 
better protect your Mac endpoints and end-users, contact us or reach out to 
your reseller of Apple.

Request Trial

https://www.jamf.com/more-information/?utm_source=downloadablecontent&utm_medium=pdf&utm_campaign=it-infosec-efficiency&utm_content=2021-07-19_protect_

